支鏈α-酮酸脫氫酶復合物

跳轉(zhuǎn)到: 導航, 搜索

支鏈α-酮酸脫氫酶復合物(branched-chain α-ketoacid dehydrogenase complex,BCKDC)是一種在粒線體內(nèi)膜中找到的酶之多次單元復合物(multi-subunit complex)。[1] 這種酶復合物催化具支鏈的短鏈α-酮酸的氧化脫羧反應。BCKDC是α-酮酸脫氫酶復合體家族內(nèi)的成員,包括丙酮酸脫氫酶復合體(pyruvate dehydrogenase)和α-酮戊二酸脫氫酶復合體(α-ketoglutarate dehydrogenase),是三羧酸循環(huán)具有重要功能的酶。

目錄

輔助因子

這個復合物的需要下列5個輔因子(cofactor):

圖1: 支鏈α-酮酸脫氫酶復合物所催化的全反應

生物上的功能

在動物組織中,BCKDC催化不可逆步驟[2] ,分解代謝支鏈氨基酸,即L-異白胺酸,L-纈氨酸和L-白胺酸及其衍生物(分別是L-α-酮-β-甲基戊酸酯,α-酮異戊酸和α-酮異己酸鹽)。[3][4][5]細菌中,這種酶參與的支鏈、長鏈脂肪酸的合成;[6]在植物中,這種酶是參與合成支鏈、長鏈的烴。

BCKDC催化的分解代謝之全反應示于圖1。

結(jié)構

BCKDC的酶催化機制很大程度上取決于這個大型酶復合體的精細結(jié)構。這種酶復合物是由三個催化次單元組成: α-酮酸脫氫酶(alpha-ketoacid dehydrogenase)(E1部分),二氫硫辛酸轉(zhuǎn)乙?;?/a>(dihydrolipoyl transacylase) (E2部分),和二氫硫辛酰胺脫氫酶(dihydrolipoamide dehydrogenase)(E3部分)。在人體中的BCKDC核心中,有24個E2部分以八面體對稱排列。[7]24 E2次單元聚合物分兩部分,12個E1α2β2四聚體和6個E3二聚體以非共價方式結(jié)合。除了E1/E3-結(jié)合區(qū)域,在E2次單元上,有2個其他重要的結(jié)構區(qū)域:

(i)以該蛋白質(zhì)的氨基末端部分的硫辛酰-軸承結(jié)構域(lipoyl-bearing domain)

(ii)在蛋白質(zhì)羧基端的內(nèi)核區(qū)域(inner-core domain)。

圖2:這是硫辛?;鶇^(qū)域如何擺蕩的概圖。注意,硫辛酰區(qū)域是以共價結(jié)合于E2BCKDC的次單元上,但可自由在E1、E2和E3次單元間擺蕩。由"機制"一節(jié)提到,硫辛酰基可自由在BCKDC的三個活性區(qū)位上自由擺動,在催化酵素復合物的活性上扮演了重要角色。[8]

內(nèi)核區(qū)域是由兩個區(qū)間片段(連接子)連接到E2次單元的其他兩個區(qū)域。[9]內(nèi)核區(qū)域?qū)?a href="/index.php?title=%E5%BD%A2%E6%88%90%E9%85%B6&action=edit&redlink=1" class="new" title="形成酶(尚未撰寫)" rel="nofollow">形成酶復合物的低聚核(oligomeric core)和催化酰基轉(zhuǎn)移酶的反應是必須的(由“機制”一節(jié)中所示)。[10] E2的硫辛酰區(qū)域可借由上述提到連結(jié)子的彈性構像,使其在組裝好的BCKDC上之E1、E2和E3次單元的活性區(qū)位間自由擺動。(參照圖2[11][12]因此就功能及結(jié)構方面來說,E2部分在BCKDC催化的整個反應扮演著重要的角色。

每個子單元的作用如下

E1次單元

E1采用硫胺素焦磷酸(TPP)作為催化的輔助因子。 E1催化α-酮酸的脫羧反應和后來的硫辛酰結(jié)構部分,以共價結(jié)合于E2次單元的還原反應(另一催化輔因子)。

E2次單元

E2催化?;?acyl group)從硫辛酰部分轉(zhuǎn)至的輔酶A化學計量的輔因子,stoichiometric cofactor)。[13]

E3次單元

在E33部分是黃素蛋白(flavoprotein),且其可作為氧化劑并利用FAD(催化輔因子)重新氧化還原E2次單元上的硫辛酰硫部分(lipoyl sulfur residues);然后FAD將這些質(zhì)子和電子轉(zhuǎn)移到NAD+(化學計量的輔因子,stoichiometric cofactor)以完成反應循環(huán)。

圖3: α-酮異戊酸結(jié)合TPP,然后進行脫羧
圖4: 將2 -甲基丙醇-TPP被氧化形成乙?;?,且同時被轉(zhuǎn)移到E2中的硫辛酰輔酶。注意,TPP重新生成。
圖5:?;D(zhuǎn)移到輔酶A
圖6:FAD輔酶氧化硫辛酰部分

機制

如前面提到的,在哺乳類動物體內(nèi)的BCKDC主要功能是,催化支鏈氨基酸分解代謝反應中的不可逆步驟。然而,BCKDC具有相對廣泛的特異性,在比較比例(comparable rates)及對支鏈氨基酸的基質(zhì)之Km值相似情況下,也可氧化4-甲硫基-2-氧代丁酸(4-methylthio-2-oxobutyrate)和2-氧代丁酸(2-oxobutyrate)。[14]BCKDC也可氧化丙酮酸(pyruvate),但這種緩慢速度下,副反應只小具生理意義。[15][16]

其反應機理如下所示。[17] 請注意,任何一種支鏈 α-酮酸可以作為起始原料;在這個例子中,α-酮異戊酸任意地被選作為BCKDC的基質(zhì)。

注意:步驟1和2在E1區(qū)域發(fā)生。

步驟1: α-酮異戊酸結(jié)合TPP,然后進行脫羧反應(decarboxylated),適當?shù)募^推動機構示于圖3

步驟2:將2-甲基丙醇-TPP(2-methylpropanol-TPP)被氧化形成輔酶。注意,TPP被再生。適當?shù)募^推動機構示于圖4

注:?;蛐刘1?acylated lipoyl arm)現(xiàn)在離開E1,并蕩到E2的活性區(qū)位,在此處發(fā)生第3步驟。

步驟3:?;?Acyl group)轉(zhuǎn)移到輔酶A(CoA)。適當?shù)募^推動機構示于圖5。

注:被還原硫辛酰臂現(xiàn)在蕩到在E3的活性區(qū)位,此處步驟4和5發(fā)生。

步驟4:將硫辛酰區(qū)域被FAD輔酶氧化,如圖所示于圖6。

步驟5: FADH2再氧化成FAD,產(chǎn)生NADH:NADH::FADH2 + NAD+ --> FAD + NADH + H+

疾病相關

缺乏任何這種復酶復合物以或復合物的抑制,會使支鏈氨基酸和它們有害衍生物在體內(nèi)積聚。這些積累會產(chǎn)生有甜味的排泄物(如耳垢和尿液),及病理學常稱為楓糖尿癥[18]

原發(fā)性膽汁性肝硬化中,[一種急性肝功能衰竭(acute liver failure)],這種酶是自身抗原(autoantigen),這些抗體(antibodies)會辨識氧化的蛋白質(zhì),導致炎癥免疫反應,有些發(fā)炎反應可由麩質(zhì)過敏解釋。[19] 其他粒線體自身抗原,可由抗線粒體抗體(anti-mitochondrial antibodies)所辨識的抗原,包括丙酮酸脫氫酶(pyruvate dehydrogenase)和支鏈酮戊二酸脫氫酶(oxoglutarate dehydrogenase)。

參考

  1. Indo I, Kitano A, Endo F, Akaboshi I, Matsuda, I. Altered Kinetic Properties of the Branched-Chain Alpha-Keto Acid Dehydrogenase Complex Due to Mutation of the Beta-Subunit of the Branched-Chain Alpha-Keto Acid Decarboxylase (E1) Component in Lymphoblastoid Cells Derived from Patients with Maple Syrup Urine Disease. J Clin Invest. 1987, 80 (1): 63–70. doi:10.1172/JCI113064. PMID 3597778. 
  2. Yeaman SJ. The 2-oxo acid dehydrogenase complexes: recent advances.. Biochem J.. 1989, 257 (3): 625–632. PMID 2649080. 
  3. Broquist HP, Trupin JS.. Amino Acid Metabolism. Annual Review of Biochemistry. 1966, 35: 231–247. doi:10.1146/annurev.bi.35.070166.001311. 
  4. Harris RA, Paxton R, Powell SM, Goodwin GW, Kuntz MJ, Han AC.. Regulation of branched-chain alpha-ketoacid dehydrogenase complex by covalent modification.. Adv Enzyme Regul.. 1986, 25: 219–237. doi:10.1016/0065-2571(86)90016-6. PMID 3028049. 
  5. Namba Y, Yoshizawa K, Ejima A, Hayashi T, Kaneda T.. Coenzyme A- and nicotinamide adenine dinucleotide-dependent branched chain alpha-keto acid dehydrogenase. I. Purification and properties of the enzyme from Bacillus subtilis.. J Biol Chem.. 1969, 244 (16): 4437–4447. PMID 4308861. 
  6. Lennarz WJ, et al.. The role of isoleucine in the biosynthesis of branched-chain fatty acids by micrococcus lysodeikticus.. Biochemical and Biophysical Research Communications. 1961, 6 (2): 1112–116. doi:10.1016/0006-291X(61)90395-3. PMID 14463994. 
  7. Aevarsson A, Chuang JL, Wynn RM, Turley S, Chuang DT, Hol WGJ.. Crystal structure of human branched-chain α-ketoacid dehydrogenase and the molecular basis of multienzyme complex deficiency in maple syrup urine disease. Structure. 2000, 8 (3): 277–291. doi:10.1016/S0969-2126(00)00105-2. PMID 10745006. 
  8. Berg, Jeremy M., John L. Tymoczko, Lubert Stryer, and Lubert Stryer. Biochemistry. 6th ed. New York: W.H. Freeman, 2007. 481. Print.
  9. Chuang DT.. Molecular studies of mammalian branched-chain alpha-keto acid dehydrogenase complexes: domain structures, expression, and inborn errors.. Annals of the New York Academy of Sciences. 1989, 573: 137–154. doi:10.1111/j.1749-6632.1989.tb14992.x. PMID 2699394. 
  10. Chuang DT, Hu CW, Ku LS, Markovitz PJ, Cox RP.. Subunit structure of the dihydrolipoyl transacylase component of branched-chain alpha-keto acid dehydrogenase complex from bovine liver. Characterization of the inner transacylase core.. J Biol Chem. 1985, 260 (25): 13779–86. PMID 4055756. 
  11. Reed LJ, Hackert ML.. Structure-function relationships in dihydrolipoamide acyltransferases.. J Biol Chem. 1990, 265 (16): 8971–8974. PMID 2188967. 
  12. Perham RN.. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein.. Biochemistry. 1991, 30 (35): 8501–8512. doi:10.1021/bi00099a001. PMID 1888719. 
  13. Heffelfinger SC, Sewell ET, Danner DJ.. Identification of specific subunits of highly purified bovine liver branched-chain ketoacid dehydrogenase.. Biochemistry. 1983, 22 (24): 5519–5522. doi:10.1021/bi00293a011. PMID 6652074. 
  14. Jones SM, Yeaman SJ.. [http//www.ncbi.nlm.nih.gov/pmc/articles/PMC1147032/ Oxidative decarboxylation of 4-methylthio-2-oxobutyrate by branched-chain 2-oxo acid dehydrogenase complex.]. Biochemistry. 1986, 237 (2): 621–623. PMID 3800905. PMC 1147032. 
  15. Pettit FH, Yeaman SJ, Reed LJ.. [http//www.ncbi.nlm.nih.gov/pmc/articles/PMC336225/ Purification and characterization of branched chain alpha-keto acid dehydrogenase complex of bovine kidney.]. Proceedings of the National Academy of Sciences of the United States of America. 1978, 75 (10): 4881–4885. doi:10.1073/pnas.75.10.4881. PMID 283398. PMC 336225. 
  16. Damuni Z, Merryfield ML, Humphreys JS, Reed LJ.. [http//www.ncbi.nlm.nih.gov/pmc/articles/PMC345583/ Purification and properties of branched-chain alpha-keto acid dehydrogenase phosphatase from bovine kidney.]. Proceedings of the National Academy of Sciences of the United States of America. 1984, 81 (14): 4335–4338. doi:10.1073/pnas.81.14.4335. PMID 6589597. PMC 345583. 
  17. Berg, Jeremy M., John L. Tymoczko, Lubert Stryer, and Lubert Stryer. Biochemistry. 6th ed. New York: W.H. Freeman, 2007. 478-79. Print.
  18. Podebrad F, Heil M, Reichert S, Mosandl A, Sewell AC, B?hles H. 4,5-dimethyl-3-hydroxy-25H-furanone (sotolone)--the odour of maple syrup urine disease. Journal of Inherited Metabolic Disease. April 1999, 22 (2): 107–114. doi:10.1023/A:1005433516026. PMID 10234605. 
  19. Leung PS, Rossaro L, Davis PA, et al.. Antimitochondrial antibodies in acute liver failure: Implications for primary biliary cirrhosis. Hepatology. 2007, 46 (5): 1436–42. doi:10.1002/hep.21828. PMID 17657817. 

外部連結(jié)

參考來源

關于“支鏈α-酮酸脫氫酶復合物”的留言: Feed-icon.png 訂閱討論RSS

目前暫無留言

添加留言

更多醫(yī)學百科條目

個人工具
名字空間
動作
導航
推薦工具
功能菜單
工具箱